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A non-iterative numerical approach for two-dimensional
viscous flow problems governed by the Falkner–Skan

equation

Shi-Jun Liao*,1

School of Na6al Architecture and Ocean Engineering, Shanghai Jiao Tong Uni6ersity, Shanghai 200030, China

SUMMARY

In this paper, a non-iterative numerical approach for two-dimensional laminar viscous flow over a
semi-infinite flat plane, governed by the Falkner–Skan equation is proposed. This approach can solve the
non-linear Falkner–Skan equation without any iteration and verifies that a direct numerical approach
could be proposed even for non-linear problems. Furthermore, this approach can also provide a family
of iterative formulae, so that it logically contains traditional iterative techniques. Copyright © 2001 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Even with using high-performance computers, it is generally not easy to solve strongly
non-linear problems. Traditionally, the iterative methodology is unavoidable for most numer-
ical approaches to non-linear problems and more conditions must be satisfied to ensure the
iterative process is convergent. Most traditional iterative techniques provide little freedom to
select those features that are critical and important for the convergence of a related iterative
process. So, it seems beneficial to propose an approach to non-linear problems that can give
more freedom.

Liao [1–4] suggested a new kind of analytical technique for non-linear problems, namely the
homotopy analysis method (HAM). Based on homotopy of topology, the validity of the HAM
is independent of whether or not there exist small parameters in the non-linear equations
considered, so that the HAM can overcome the limitations and restrictions of perturbation
techniques. Although the HAM is an analytical technique, its basic ideas can be applied to
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develop new numerical techniques. For example, Liao [5,6] and Liao and Chwang [7]
successfully applied the HAM to propose a so-called general boundary element method
(GBEM), which is valid even for those non-linear problems whose governing equations do not
contain any linear terms (note that in this case the traditional BEM is invalid because no
fundamental solution exists). Liao [8] further pointed out that similar approaches are also
suitable for other numerical techniques, such as the finite difference method, finite element
method, and so on. In this paper, the basic ideas of the HAM are applied to propose a
non-iterative numerical approach for two-dimensional viscous flow problems governed by the
non-linear Falkner–Skan equation. It will be shown that the proposed approach can solve
non-linear differential equations without iteration. Furthermore, the proposed approach can
also provide a family of iterative formulae, so that it contains, in logic, the most traditional
iterative techniques.

2. BASIC IDEAS

2.1. Mathematical formulae

Laminar viscous flow over a two-dimensional semi-infinite plate is governed by the Falkner–
Skan [9,10] equation

F§(h)+aF(h)F¦(h)+b{1− [F %(h)]2}=0, h� [0, +�) (2.1)

with boundary conditions

F(0)=F %(0)=0, F %(+�)=1 (2.2)

Notice that Equation (2.1) is defined in an infinite domain h� [0, +�). In order to overcome
this difficulty, the following transformation is made

f(t)=F %(h), t=

F

1+
F
(2.3)

so that Equations (2.1) and (2.2) become

t(1−t)6f
�

f
�d2f

dt2

�
+
�df

dt

�2n
+ (1−t)[2at4− (1+2t)(1−t)4f ]f

df

dt

+4bt3(1−f2)=0, t� [0, 1] (2.4)

and

f(0)=0, f(1)=1 (2.5)
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respectively. Note that the governing equation (2.4) does not contain any linear terms in the
unknown function f(t), thus its non-linearity is rather strong.

Let A denote a non-linear differential operator defined by

Af=t(1−t)6f
�

f
�d2f

dt2

�
+
�df

dt

�2n
+ (1−t)[2at4− (1+2t)(1−t)4f ]f

df

dt

+4bt3(1−f2) (2.6)

Let '"0, p� [0, 1] be real numbers. To apply the HAM, first of all, the so-called zeroth-order
deformation equation is constructed,

(1−p){L[F(t, p, ')]−L[f0(t)]}=p'A[F(t, p, ')], t� [0, 1], p� [0, 1], '"0 (2.7)

with boundary conditions

F(0, p, ')=0, F(1, p, ')=1 (2.8)

where the auxiliary operator L is a linear second-order ordinary differential operator
satisfying

LF=0UF=0 (2.9)

Figure 1. Approximations in the case of a=1
2, b=1, '= −0.1 and L=L1; × , approximate results by means of no

iterations; —, exact solution; horizontal axis, t ; vertical axis, f(t).
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Figure 2. R.m.s. errors of the iterative process when a=1
2, b=1 and L=L1; curve 1, r.m.s. for first-order iterative

formula (3.11) (M=1); curve 2: r.m.s. for second-order iterative formula (3.11) (M=2); curve 3: r.m.s. for third-order
iterative formula (3.11) (M=3).

and f0(t) is an initial approximation satisfying the boundary conditions f0(0)=0 and
f0(1)=1. Clearly, f0(t) and f(t) are solutions of (2.7) and (2.8) when p=0 and p=1
respectively. Thus, we have

F(t, 0, ')=f0(t) (2.10)

F(t, 1, ')=f(t) (2.11)

Write

f0
[k](t, ')=

(kF(t, p, ')
(pk

)
p=0

(2.12)

namely the kth-order deformation derivatives of F(t, p, '). Then, using (2.10), the Maclaurin
series of F(t, p, ') about p is
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F(t, p, ')=F(t, 0, ')+ %
+�

k=1

f0
[k](t, ')

k !
pk=f0(t)+ %

+�

k=1

f0
[k](t, ')

k !
pk (2.13)

If f0(t), ' and the auxiliary linear operator L are so selected that the above Maclaurin series
is convergent at p=1 in the range of t� [0, 1], by Equation (2.11) one has that

f(t)=f0(t)+ %
+�

k=1

f0
[k](t, ')

k !
(2.14)

Differentiating the zeroth-order deformation equations (2.7) and (2.8) k times with respect to
p and then setting p=0, we obtain the so-called kth-order deformation equations governing
f0

[k](t, ') (k]1),

Lf0
[k]= fk(t, '), t� [0, 1], '"0 (2.15)

with boundary conditions

f0
[k](0, ')=0, f0

[k](1, ')=0 (2.16)

where

f1(t, ')='Af0 (2.17)

and

Figure 3. Approximations in the case of a=3, b=3, '= −0.075 and L=L1; × , approximate results by means of
no iterations; —, exact solution; horizontal axis, t ; vertical axis, f(t).
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Figure 4. R.m.s. errors of the iterative process when a=b=3 and L=L1; curve 1, r.m.s. for first-order iterative
formula (3.11) (M=1); curve 2, r.m.s. for second-order iterative formula (3.11) (M=2); curve 3, r.m.s. for third-order

iterative formula (3.11) (M=3).

fk(t, ')=k
!
Lf0

[k−1]+'
dk−1A[F(t, p, ')]

dpk−1

)
p=0

"
, k]2 (2.18)

It is emphasized that (2.15) is a linear differential equation with a linear boundary condition
(2.16), which can be easily solved.

2.2. Con6ergence of the series of approximations

Liao [3] generally proved that, if the series of approximations given by the HAM is convergent,
it must converge to one solution of the non-linear problem under consideration. Similarly, it
can be proven in this paper that, if the series

f0(t)+ %
+�

k=1

f0
[k](t, ')

k !
(2.19)

converges, it must be a solution of Equations (2.4) and (2.5).
Note that the initial approximation f0(t) satisfies the boundary conditions (2.5). Thus,

according to Equation (2.16), the infinite series (2.19) converges to 0 at t=0 and to 1 at t=1
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respectively. Clearly, Af0(t) denotes the residual error of the governing equation (2.4) at
p=0, i.e. under the initial approximation f0(t)=F(t, 0, '). In general,

R(t, p)=A[F(t, p, ')] (2.20)

denotes the residual error of (2.4) at p� [0, 1] and t� [0, 1]. Clearly, if F(t, 1, ') is a solution of
(2.4), it holds that

R(t, 1)=A[F(t, 1, ')]=0, t� [0, 1] (2.21)

Notice that the Maclaurin series of R(t, p) is

Af0(t)+ %
+�

k=1

dkA[F(t, p, ')]
dpk

)
p=0

pk (2.22)

Figure 5. Approximations in the case of a=1
2, b=1, '= −5 and L=L2 (g=1); × , approximate results by means

of no iterations; —, exact solution; horizontal axis, t ; vertical axis, f(t).
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Figure 6. Approximations in the case of a=1
2, b=1, '= −5 and L=L2 (g=3); × , approximate results by means

of no iterations; —, exact solution; horizontal axis, t ; vertical axis, f(t).

When p=1, the above Maclaurin series gives

Af0(t)+ %
+�

k=1

dkA[F(t, p, ')]
dpk

)
p=0

(2.23)

Hence, we need to prove that

Af0+ %
+�

k=1

dkA[F(t, p, ')]
dpk

)
p=0

=0, t� [0, 1] (2.24)

To prove (2.24), we have by (2.17), (2.18) and straightforward calculations that

fk(t, ')='k ! %
k−1

i=0

diA[F(t, p, ')]
dpi

)
p=0

, k]1 (2.25)
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Besides, if the series (2.19) is convergent, it holds that

lim
k�+�

f0
[k](t, ')

k !
=0 (2.26)

Using (2.26), (2.15), (2.25) and (2.9), we have

lim
k�+�

L
�f0

[k]

k !
�

= lim
k�+�

fk(t, ')
k !

=' lim
k�+�

%
k−1

i=0

diA[F(t, p, ')]
dpi

)
p=0

=0 (2.27)

Because we define '"0 in (2.7), we can obtain (2.24) from the above expression. Therefore,
as long as the series (2.19) is convergent, it must converge to the solution of (2.4) and (2.5).
This completes the proof.

Figure 7. Approximations in the case of a=1
2, b=1, '= −3 and L=L2 (g=1); × , approximate results by means

of no iterations; —, exact solution; horizontal axis, t ; vertical axis, f(t).
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Figure 8. Approximations in the case of a=1
2, b=1, '= −3 and L=L2 (g=3); × , approximate results by means

of no iterations; —, exact solution; horizontal axis, t ; vertical axis, f(t).

3. NUMERICAL CALCULATIONS

The convergence of series (2.19) depends on the initial approximation f0(t), the auxiliary
parameter ' and the auxiliary linear operator L. As mentioned in References [1–8], there is
a lot of freedom in their selection, and this increases the possibility of ensuring that series
(2.19) is convergent. For the sake of simplicity, we simply select f0(t)=t and use an auxiliary
linear operator in the following form:

L=a(t)
(2

(t2+b(t)
(

(t
+c(t) (3.1)

where a(t), b(t), c(t) are real functions. Consider here three kinds of auxiliary linear
operators. First of all, one can use the initial approximation f0(t) to linearize the non-linear
Equation (2.4). To do so, (2.4) is written in the form
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A(t)f¦(t)+B(t)f %(t)+C(t)f(t)+4bt3=0 (3.2)

where

A(t)=t(1−t)6f0
2(t) (3.3)

B(t)=t(1−t)6f0(t)f0(t)+ (1−t)È2at4− (1−t)4(1+2t)f0(t)Éf0(t) (3.4)

C(t)= −4bt3f0(t) (3.5)

To satisfy (2.9), the first auxiliary linear operator is defined as follows:

L1f(t)=A(t)f¦(t)+B(t)f %(t)+C(t)f(t) (3.6)

Figure 9. Approximations in the case of a=b=3, '= −2 and L=L2 (g=2); × , approximate results by means
of no iterations; —, exact solution; horizontal axis, t ; vertical axis, f(t).
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Figure 10. Approximations in the case of a=b=3, '= −2 and L=L2 (g=1); × , approximate results by means
of no iterations; —, exact solution; horizontal axis, t ; vertical axis, f(t).

corresponding to a(t)=A(t), b(t)=B(t) and c(t)=C(t). Also,

L2f(t)=f¦(t)+gf(t), g\0 (3.7)

and

L3f(t)=f¦(t)−gf(t), g\0 (3.8)

are selected as the second and third auxiliary linear operators, corresponding to a(t)=
1, b(t)=0 and c(t)=9g respectively. Without loss of generality, the finite difference method
(FDM) is used to solve the linear differential equations (2.15) and (2.16). For the numerical
computation, the region [0, 1] is divided into N (N=1000) equal sub-domains, say, tm=
mDt=m/N (05m5N). Then, applying the FDM to (2.16) and (2.15), the following set of
linear algebraic equations is obtained (k]1):
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f0
[k](0, ')=f0

[k](1, ')=0 (3.9)

�
a(tm)−

b(tm)Dt

2
n

f0
[k](tm−1, ')− [2a(tm)−c(tm)(Dt)2]f0

[k](tm, ')

+
�

a(tm)+
b(tm)Dt

2
n

f0
[k](tm+1, ')= fk(tm, ')(Dt)2, 15m5N−1 (3.10)

which can be easily solved by the direct method. Here, it is emphasized that the related
coefficient matrix M of the above discrete linear algebraic equations is constant for all
f0

[k] (k]1), so that if its inverse matrix M−1 is obtained it can be used again and again to get
all f0

[k] (k]1).
If series (2.19) converges, we have the Mth-order approximation

Figure 11. Approximations in the case of a=b=3, '= −1 and L=L2 (g=2); × , approximate results by means
of no iterations; —, exact solution; horizontal axis, t ; vertical axis, f(t).
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Figure 12. Approximations in the case of a=b=3, '= −1 and L=L2 (g=1); × , approximate results by means
of no iterations; —, exact solution; horizontal axis, t ; vertical axis, f(t).

fM(t)=f0(t)+ %
M

k=1

f0
[k](t, ')

k !
(3.11)

The root-mean-square residual error of (2.4) under the above Mth-order approximation fM(t)
is defined by

EM=

D %
N−1

m=1

�AfM(tm)�2

N−1
(3.12)

When series (2.19) is convergent and the order M is sufficiently high, Equation (3.11) can give
an accurate enough approximation and therefore no iteration is necessary. This means that the
approach here can give accurate enough solutions of a non-linear problem without iteration.
On the other hand, if the order M is not high enough, the approximation fM(t) given
by (3.11) might be unsatisfactory, which, however, can be further used as a new initial
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approximation f0(t) to get better approximations. Therefore, formula (3.11) also provides a
family of iterative formulae in the parameter ' and order M. It is easy to prove that when
M=1, and we consider v= −' as the iterative factor, (3.11) corresponds to the Gauss–Seidel
iteration formula. Thus, the proposed approach logically contains the iterative methodology.
In this paper, all of the so-called ‘exact’ solutions are given by this iterative approach.

To illustrate the validity and potential of the proposed numerical approach, without loss of
generality, two cases are considered here. One is a=1

2, b=1, and the other is a=b=3.

3.1. a=1
2, b=1 and L=L1

First of all, we use L1 defined by (3.6) as the auxiliary linear operator. As mentioned above,
if series (2.19) converges and the order M of approximation is sufficiently large, an accurate
enough approximation of the non-linear equation (2.4) can be obtained without any iteration.
Our calculations show that this is indeed true. For instance, when −0.155'B0, the
corresponding series (2.19) indeed converges to the exact solution of (2.4), as shown in Figure

Figure 13. Approximations in the case of a=1
2, b=1, '= −10 and L=L3 (g=50); × , approximate results by

means of no iterations; —, exact solution; horizontal axis, t ; vertical axis, f(t).
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Figure 14. Approximations in the case of a=1
2, b=1, '= −10 and L=L3 (g=5); × , approximate results by

means of no iterations; —, exact solution; horizontal axis, t ; vertical axis, f(t).

1 for the case '= −0.1. In fact, when '= −0.1, the tenth-order approximation given by
(3.11) is accurate enough. Thus, an accurate enough approximation of a strongly non-linear
problem can be indeed obtained with no iterations! Considering the governing place of the
iterative methodology in numerical techniques for non-linear problems, this might increase our
understanding about numerical approaches for non-linear equations. Note that, currently,
more and more researchers like to apply direct methods to solve linear partial differential
equations (for instance, refer to Greengard and Lee [6] and McKenney and Greengard [8]). It
is interesting that the proposed approach can give an effective, direct numerical approach for
non-linear problems. This might break some new fields of research.

The so-called ‘exact solution’ in Figure 1 is obtained by the above-mentioned iterative
approach based on formula (3.11). The root-mean-square errors defined by (3.12) when using
the first- (M=1), second- (M=2) and third-order (M=3) iterative formulae of (3.11), in the
case '= −0.1, are shown in Figure 2. Clearly, the higher the order of the iterative formula
(3.11), the faster the related iterative process converges. And when M is sufficiently

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 495–518



2D LAMINAR VISCOUS FLOW 511

large, no iteration is necessary. Similar qualitative conclusions have been given in References
[5–8], so there is no need to discuss them here. For further details, please refer to Liao [5,6].

3.2. a=b=3 and L=L1

Here, we use L1 defined by (3.6) as the auxiliary linear operator. The calculations show that,
when −0.0755'B0 and the order M is sufficiently high, (3.11) can give accurate enough
approximations, as shown in Figure 3. Note that the non-linearity of (2.1) is now stronger than
that in case of a=1

2, b=1. Even so, when M]20, we still get an accurate enough
approximation without iteration! Moreover, when '= −0.1, the related root-mean-square
errors of the iterative process based on formula (3.11) at the first- (M=1), second- (M=2)
and third-order (M=3) of approximation are shown in Figure 4. Once again, the same
qualitative conclusion is obtained as that mentioned above, namely, the higher the order of the
approximation, the faster the related iterative process converges. All of these indicate that the
foregoing conclusions have general meanings.

Figure 15. Approximations in the case of a=1
2, b=1, '= −5 and L=L3 (g=50); × , approximate results by

means of no iterations; —, exact solution; horizontal axis, t ; vertical axis, f(t).
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Figure 16. Approximations in the case of a=1
2, b=1, '= −5 and L=L3 (g=5); × , approximate results by means

of no iterations; —, exact solution; horizontal axis, t ; vertical axis, f(t).

3.3. a=1
2, b=1 and L=L2

Here we use L2 defined by (3.7) as the auxiliary linear operator. Our calculations indicate that,
when 0Bg53 and −55'B0, formula (3.11) at a sufficiently high order of approximation
can give accurate enough approximations so that no iteration is needed, as shown in Figures
5–8.

3.4. a=b=3 and L=L2

Here we use L2 defined by (3.7) as the auxiliary linear operator. Our calculations indicate that,
when 0Bg52 and −25'B0, formula (3.11) at a sufficiently high order of approximation
can give accurate enough approximations so that no iteration is needed, as shown in Figures
9–12.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 495–518
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3.5. a=1
2, b=1 and L=L3

Here we use L3 defined by (3.8) as the auxiliary linear operator. Our calculations indicate that,
when 0Bg550 and −105'B0, formula (3.11) at a sufficiently high order of approximation
can give accurate enough approximations so that no iteration is needed, as shown in Figures
13–16.

3.6. a=b=3 and L=L3

Here we use L3 defined by (3.8) as the auxiliary linear operator. Our calculations indicate that,
when 0Bg520 and −45'B0, formula (3.11) at a sufficiently high order of approximation
can give accurate enough approximations so that no iteration is needed, as shown in Figures
17–20.

Using the above-mentioned three kinds of auxiliary linear operators, we calculated many
cases for different values of a and b, and have found that for all of them, the proposed

Figure 17. Approximations in the case of a=b=3, '= −4 and L=L3 (g=20); × , approximate results by means
of no iterations; —, exact solution; horizontal axis, t ; vertical axis, f(t).

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 495–518
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Figure 18. Approximations in the case of a=b=3, '= −4 and L=L3 (g=10); × , approximate results by means
of no iterations; —, exact solution; horizontal axis, t ; vertical axis, f(t).

approach can give accurate enough approximations of the non-linear equations (2.4) and (2.5)
without any iterations, if proper values of ' and g (when L2 or L3 is selected as the auxiliary
linear operator) are used. These calculations indicate that for a given auxiliary linear operator,
there is a region of ' in which the proposed direct approach is valid. Notice that, when using
L2 defined by (3.7) or L3 defined by (3.8) as auxiliary linear operator, the proposed approach
is valid in the large regions of g and ', although L2 and L3 have nearly no relationship with
the original non-linear equation (2.4). All of these verify that the proposed direct approach is
not very sensitive to the selection of the auxiliary linear operator L and the value of '.
However, for a non-linear problem and a given auxiliary linear operator, we have not known
how to determine the range of ' to ensure that the proposed approach is valid in general.

Note that the approach is still valid if one applies other numerical techniques, such as the
finite element method (FEM), the finite volume method (FVM), and so on, to solve the related
linear equations (2.15) and (2.16), as mentioned by Liao [8]. Moreover, when we select L2

defined by (3.7) or L3 defined by (3.8) as the auxiliary linear operator whose fundamental
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solution is known, Equations (2.15) and (2.16) can be solved by the BEM, and in this case the
proposed approach becomes the so-called general boundary element method proposed in
[5–7]. Hence, the proposed non-iterative numerical approach to non-linear problems has
rather general meanings.

Note that, here, the FDM was used to solve (2.15) and (2.16) and the related coefficient
matrix of the discrete algebraic equations are the same for all k]1 so that it is numerically
efficient to solve all of the kth-order (k]1) deformation equations (2.15) and (2.16). Similarly,
one can apply the proposed approach to two- or three-dimensional non-linear problems, if one
can find a sufficiently efficient numerical method to solve the related high-order deformation
equations.

Figure 19. Approximations in the case of a=b=3, '= −2 and L=L3 (g=20); × , approximate results by means
of no iterations; —, exact solution; horizontal axis, t ; vertical axis, f(t).

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 495–518
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Figure 20. Approximations in the case of a=b=3, '= −2 and L=L3 (g=10); × , approximate results by means
of no iterations; —, exact solution; horizontal axis, t ; vertical axis, f(t).

4. CONCLUSIONS AND DISCUSSIONS

In this paper, we propose a non-iterative (direct) numerical approach for two-dimensional
viscous flow problems governed by the non-linear Falkner–Skan equation. We prove that, as
long as the related infinite series (2.19) converges, it must converge to the solution of the
original non-linear Equations (2.4) and (2.5). Our numerical calculations verify the validity of
the proposed direct numerical approach.

This direct numerical method has the following significance. First of all, an accurate enough
approximation of a strongly non-linear problem can be obtained by the proposed approach
even with no iteration, if the parameter ', the initial guess and the auxiliary linear operator L
are properly selected. This might shake the governing place of iterative methodology in solving
non-linear problems. Notice that, currently, many researchers apply direct methods to solve
linear partial differential equations (for instance, Greengard and Lee [11], and McKenney and
Greengard [12]). The proposed approach verifies that an effective, non-iterative numerical
technique for non-linear problems can be given, and this might break some new grounds of
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research. Secondly, the proposed numerical approach logically includes the iterative methodol-
ogy, because when the order M is low, Equation (3.11) also provides us with a family of
iterative formulae in parameters ' and M, and our numerical calculations verify once again
that the higher the order of approximation, the faster the related iterative process converges;
a similar conclusion to that given by Liao [8]. On the other hand, when the order M of
approximation is high enough, no iteration is necessary, as shown in Figures 1 and 3 and
Figures 5–20. Thus, the proposed numerical approach would seem to have more general
meanings. Finally, it shows the possibility that if we could find the analytical solution of the
linear kth-order deformation equations, we even might obtain the analytical approximations of
the considered viscous flow. This might encourage us to apply the HAM to give some purely
analytical solutions of some viscous flow problems, as performed by Liao [3,4].

Although we have considered here a simple problem, i.e. two-dimensional viscous flow, the
non-linearity of (2.4) is rather strong. We think that the basic ideas of the proposed
non-iterative numerical approach might be applied to solve other strongly non-linear problems
in science and engineering.
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APPENDIX A. NOMENCLATURE

Non-linear differential operator for governing equationA
The real functions, as coefficients of the auxiliary linear operator (3.1)a(t), b(t), c(t)
The real functions defined by Equations (3.3), (3.4) and (3.5) respec-A(t), B(t), C(t)
tively

EM r.m.s. residual error of (2.4) under the Mth-order approximation
Non-zero auxiliary parameter'

L, L1, L2, L3 Auxiliary linear operator
Order of approximationM
Embedding parameterp

Greek letters
a, b Parameters in the Falkner–Skan equation (2.1)

=F %(h), dependent variablef(t)
g Parameter in auxiliary linear operators L2 and L3

Independent variableh

Independent variable defined by (2.3)t

Homotopy of f(t)F(t, p, ')
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